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Dirac Materials
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For standard case
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Kondo Effect

p(T) = po + bT° — aln(T)

There is a crossover temperature, Tk, below
which the coupling between the conduction
electrons and the dynamical magnetic impurity
grows non-perturbatively

T<Tk Formation of a many-body singlet
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Experimental evidence
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Theoretical approach

H = HDM ‘|‘Himp

.'.

HDM th (k *Too! — /L)Ck:a’

Himp = JZ CroToo!Cror - SO(r — R)

Large-N expansmn

S is expressed in terms of auxiliary fermionic operators “” satisfying the constrain
ny =S fif, =1. Then
Himp = J 3 Choylrior forfo

k.k' o
The interaction is decoupled via the mean-field

SNZfTCkJ

And the constrain on nt is enforced via a Lagrange multiplier u_fl




Determination of Tk

The field “s” and the Lagrange multiplier are obtained via the self-consistent equations:

/D‘“ g meE)E—pNEe+p) 1
p—p (E—pp)?+(sPN (e +p)/2)2
/D“ I nr(e)[s|*N (e + p) 4
pp (= pp)?+ (7]s]PN (e + 1)/2)?

We identify Tk as the highest T
for which the two self-consistent equations admit a solution



Scalings for Tk

At the Dirac point u=0

3D 2D
V3 2 K = o
T = Dw\/1 T N(D)T T [1 N(D)J]

Withoff and Fradkin PRL (1990), Sengupta and Baskaran
PRB (2008), E. Orignac and S. Burdin PRB (2013), C.
Gonzalez-Buxton and K. Ingersent PRB (1998)

Away from Dirac point u#0

Inthe limit kpTx < p < D and J S J.
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1 — 1/(N(D)J)]
|11/ D)
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TK:Dexp[ 202/ D?

where x(p) = pu?/D [k(u) = D] for u > 0 [p < 0].
A. Principi, G. Vignale, ER, arXiv 1410.8532



kBTK/D

3D

Scalings for Tk: general case

kBTK/D

A. Principi, G. Vignale, ER, arXiv 1410.8532




Kondo resistivity: pk

In the limit T=0
3D 2D
h 329, 1/3 Tofsgare h 4 n.
IOK(T:O):_2< 2 2) — b
e \3m*NZ @ PK e2 TN, n
Same scaling as for the case of non P.S. Comaglia et al, PRL (2009)

magnetic long-range scatterers

AA Burkov, MD Hook, L. Balents PRB (2011)

At finite T
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A. Principi, G. Vignale, ER, arXiv 1410.8532



Interplay of scalar and magnetic potential

Himp &l lrad(T—R)Y+ J Y &, TooCrorSO(r—R)
. R
d-wave superconductors
i The scalar part of the impurity potential
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Tk is uniform across the sample

1.6 and well defined
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If the short range scalar potential is

0.4 due to other impurities removed

Buchholtz and  Zwicknagl (1981) from the magnetic impurity it has
0 | Stamp (1987), Balatsky et al. (1995) ]
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Long-range disorder

Charge impurities are a common source of disorder. However they can
often be treated as short range disorder. Things are different in most
Dirac materials

e Linear dispersion => vanishing DOS close to Dirac points
=>poor screening of the disorder due to charge impurities

The disorder is renormalized but
retains its long-range character

» Charge impurities therefore cause strong, long-range, density
iInhomogeneities close to Dirac point

* Linear dispersion
Strong, long-range, density inhomogeneities

\

Strong, long-range, inhomogeneites of the DOS
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Interplay of scalar and magnetic potential:
long-range scalar potential

Not important in Charge impurities
superconductors:
well screened l

In non-superconducting Dirac materials, due to vanishing DOS they induce strong, long-range,
carrier density inhomogeneities
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Shifts bottom of the band shift of
Fermi energy P 5n(r)
2D 3D

LDOS ~n ¢ LDOS ~ n23

Fluctuations » |
imply fluctuations of LDOS

J. Martin et al. Nat Phys. (2008)
Y. Zhang et al. Nat. Phys. (2009)



Effect of long-range scalar disorder
For simplicity we assume a Gaussian distribution for the density probability

Po(n) = exp [~ (n—n)?/(207)] /(V20,,),

Using the relation between Tk and p and the fact that 1/2
in3D: M nt/3 in 2D: pl ~n

:L Instead of a smgle value of TK we have a dlstrlbutlon of TK |
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A. Principi, G. Vignale, ER, arXiv 1410.8532
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A. Principi, G. Vignale, ER, arXiv 1410.8532

For low Tk the scaling
1/[TkIn3(Tk)]
very similar to
1/(TkO-8)
obtained by fitting numerical results by V.G.
Miranda et al. PRB (2014)



LDOS fluctuations close to MIT

Typically in materials other than Dirac materials is difficult to obtain strong, long-range
fluctuations of the LDOS. A similar situation can be obtained close to a metal-insulator
transition. In this case the probability distribution for the LDOS p is log-normal

} |

|.V. Lerner, Phys. Lett. A (1988),
B.L. Altshuler and V.N. Prigodin JETP (1987)

| | ] 1
P(p)= exp! ———In? | £ ¢
vVaru P { 4u Po

In this case we also get a singular distribution for Tk

P(Tx)=4nru) "2 “—l—an[pOJe_“ln(sp/TK)]}

TxIn(er/Tx) CXP{ 4u

V. Dobrosavlyevic, T.R. Kirkpatrick, G. Kotliar

PRL (1992)
However:

- The conditions are difficult to achieve

- The effects are weaker than in Dirac Materials



Free carriersevenforT->0
Considering that

3D)
P T In(T5 )52 Trc[In(Tx)J?

We see that at any is a considerable fraction of the sample for which Tk is very small

v

At any T, no matter how low, there is a significant fraction, ns, of carriers
not bound to the impurities

We can obtain such fraction at temperature T by calculating the integral

3D 5D
nie(T) oc | In(T)| /27 /Gon) ne(T) oc | In(T)| 727/ ()

And we find, for T->0

Even for T -> 0 ny is significant



Non-Fermi liquid behavior
Consider the magnetic susceptibility. We have

TLfy (T)
Xm X 78
And therefore we find:
3D 2D
1 1
m X m X
M T In(T) 72 2 T (7)) 2

Xm diverges for for T->0

i ¢

‘Strong N_on-Fermi-Lid ei \
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P. Nozieres (1974)

Xm alsp does not follow the Curie-Weiss law (1/T) it diverges more slowly

A. Principi, G. Vignale, ER, arXiv 1410.8532



Impurity-bound states in SCs with SOC: motivation
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A magnetic impurity can create states with energies within

the gap due to the superconducting paring. These states are
spatially bound to the impurity (Yu-Shiba-Rusinov).A chain

of impurities can create a band of these states.

In the presence of SOC a FM chain on SC with SOC
appears to have Majorana states at the ends

E S. Nadj-Perge et al.

Ferromagnet Science (2014)
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Impurity-bound states in SCs with SOC: model

H = Hsc Himp

Hgo =) Wl [m® (& + 7 ® (Ao(P)oo Vp
b

SOC triplet SC

Huyp=U(r—R\)®0g+J(r —R)p®S -0

Let

GSC — [E — HSC]_l

Then the Schrodinger equation for the Hamiltonian H can be rewritten as
(F. Pientka, L. I. Glazman, and F. von Oppen, PRB (2013))

6(p) ~ Gso(E.p) | Hunp(lp — p)0(6) =0

This equation admits nontrivial solutions for values of E such that

det[l — ch(E, p)Himp(’p — p/)] = 0.

For values of |E| <A we have bound states (Shiba states)

E. Rossi 20



Impurity-bound states in SCs with SOC: results

s—-wave superconductor M 0=0

Eizon| _ ¥ =I5 2472/ (B - T7)2+ (v =1)(Jo—1)*
A, ’}/2(1+(J0—J1)2)—|-2’7J()J1 ‘|‘J§J12

s As expected SOC mixes
states with different I. It

also causes an interplay
of U and ]

~

v =1+ a?
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Y. Kim, J. Zhang, ER, R. Lutchyn
arXiv:1410.4558 (2014)

E. Rossi



Impurity-bound states in SCs with SOC: results

Dependence on O

S—-wave
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SOC induces strong 0 dependence that can be used to
tune the fermion parity of the bound state

_ Y. Kim, J. Zhang, ER, R. Lutchyn
E. Rossi arXiv:1410.4558 (2014) 22



Conclusions

e Obtained scaling of Tk and Kondo resistivity in 3D Dirac materials

Nimp
1'=0) x
IOK( ) n4/3
* Interplay of long-range disorder and Kondo effect in Dirac materials gives rise to a
distribution of Kondo temperatures. Close to Dirac point:

1 1

(2D)
Trc[In(Tx )5/ X (TP

PBD)

* Low T tail of P(Tk) induces NFL
1 1
1m O< Imn
Xm 2 T In(T) 372 X B T (7)) 2

e Study effect of SOC on impurity bound states in 2D superconductors

SOC strongly affects the bound states created by
isolated impurities in superconductors

Can change parity of Shiba state
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